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Abstract

We study RR interval (RRI) correlations in subjects with
long QT syndrome (LQTS). We aim to find distinctive dif-
ferences in nonlinear heart rate variability (HRV) mea-
sures between the LQTS subjects and healthy controls.

We analyze 24-hour Holter recordings from 127 healthy
controls and 115 LQTS samples with unified age distri-
butions. Beta blockers (BB), which are known to affect
HRV, are a common treatment for LQTS, and that is the
primary confounding factor to be accounted for. We com-
pute conventional short-scale (4–16 RRIs) detrended fluc-
tuation analysis (DFA) scaling exponents α1 at various de-
grees of detrending and compare the results to other com-
mon HRV measures. We complement the study by investi-
gating scale-dependent exponents α(s).

We find statistically significant reduction in the short-
scale α1 of LQTS for subjects with (Welch’s t-test p =
2.5 × 10−13) and without (p = 3.2 × 10−8) BBs. These
DFA-2 results yield considerable improvement over the lin-
ear detrending of DFA-1. Among other common HRV fea-
tures the DFA α1 is the best indicator for LQTS. Despite
the clear differences in the mean behavior, the predictive
power of the measures is diminished by large individual
variability. The scale-dependent picture may aid in finding
optimal HRV indicators for LQTS diagnosis.

1. Introduction

Long QT syndrome (LQTS) is a genetic condition de-
laying myocardial repolarization, which can be detected as
prolonged QT intervals on the electrocardiogram (ECG).
Typical symptoms of LQTS are syncope and cardiac ar-
rest, which can cause sudden cardiac death even in young
asymptomatic patients. The first clinical manifestation of
LQTS is sudden death in 10 % of the cases, so accurate and
early detection of the condition is vital [1].

LQTS is caused by gene mutations affecting the ion
channels responsible for the action potential of the heart.
LQTS has several genotypes, but the 3 most common types
(LQT1, LQT2, and LQT3) account for about 90 % of the
cases [1]. Genetic testing is neither always easily available
nor cost effective, so initial screening of LQTS patients is

based on the duration of the QT intervals and Schwartz
criteria. The Schwartz criteria are a scoring system con-
sisting of heart rate-corrected QT values, a few other ECG
findings such as notched T wave, clinical history, and fam-
ily history [1]. Problems with calculating proper corrected
QT values and misinterpretation of symptoms result in di-
agnostic miscues [2].

Heart rate variability (HRV) analysis could potentially
assist in diagnosing LQTS. Our main analysis tool is de-
trended fluctuation analysis (DFA), which was originally
introduced to study long-range power-law correlations in
DNA sequences based on the theory of random walks [3].
By computing the mean fluctuations F (s) around the local
polynomial trends at multiple scales s, DFA is applied to
assess the power-law scaling F (s) ∝ sα characterized by a
scaling exponent α [4,5]. The method was quickly adopted
for studying non-stationary physiological time series and
the beat-to-beat fluctuations of the heart [4]. Previous stud-
ies of LQTS with DFA have been inconclusive [6], possi-
bly due to the limited number and short duration of the
data. Here, we utilize a large amount of 24-hour record-
ings to overcome this limitation together with advances in
the DFA methodology [7, 8].

2. Data and preprocessing

We utilize two large databases from the Telemetric and
Holter ECG Warehouse (THEW) [9, 10]. Healthy con-
trols from (E-HOL-03-0202-003) database and Congential
Long QT syndrome patients from (E-HOL-03-0480-013)
database. Both databases contain 24-hour Holter ECG
recordings with multiple leads. RR intervals were ex-
tracted from the ECG using an in-house algorithm (QRS-
detection specificity 99.5 % and sensitivity 99.6 % with
30 ms threshold for the MIT-BIH Arrhythmia Database).

The original LQTS database contains 420 recordings
from 307 subjects mostly from the 3 most common geno-
types. Studying the differences between the genotypes is
outside the scope of this paper, but the LQTS group is fur-
ther split into two groups based on whether they were on
beta blocker (BB) therapy or were untreated. The medica-
tion is a primary confounding factor due to how BBs affect
the heart rate and HRV. BBs are usually the first choice of
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Table 1. Basic statistics of the studied groups. The num-
ber of subjects (N ) is shown separately for males (m) and
females (f), and for the rest mean ± standard deviation.

Healthy LQTS no BB LQTS BB
N (m/f) 127(57/70) 73(27/46) 42(10/32)
age (years) 40± 14 40± 14 33± 12
RR (ms) 766± 81 813± 101 897± 90
QT (ms) 399± 29 451± 49 499± 44

treatment for LQTS for their efficiency at reducing car-
diac events [11]. Age is also known to affect HRV [12]
and over a third of the LQTS samples are from young sub-
jects (< 16 years) compared to just a few from the healthy
controls. Limiting the analysis to ≥ 16-year-old subjects
results in approximately similar age distributions for the
studied groups.

Due to the nature of the 24 h Holter recordings measur-
ing different daily activities, there are always some outliers
and samples with poor data quality. We perform a simple
filtering to limit our analysis to the samples with consis-
tent data: (i) we apply a rolling median filter with 31 RRI
kernel to the data, (ii) RRIs are discarded if they fall out-
side the interval 0.75η ≤ RRI ≤ 1.5η, where η is the local
median, and (iii) RRIs are also discarded if the difference
between subsequent intervals is greater than 200 ms.

Samples, where more than 1 % of RRIs are discarded,
are excluded from the analysis to ensure high data quality.
After the data selection, we have 127 healthy controls and
115 LQTS samples, of which 42 are on BBs and 73 are
untreated. The LQTS genotypes are as follows: 68 LQT1,
33 LQT2, 3 LQT3, and 11 others. Table 1 summarizes the
basic statistics about the studied groups.

3. Theory and methods

Our main tool for HRV analysis is detrended fluctuation
analysis (DFA) [3–5]. We compute conventional short-
scale (4–16 RRIs) scaling exponents α1 [4] with DFA de-
trending orders 1–3 (the degree of the local detrending
polynomial). We utilize maximally overlapping windows
in the computations for increased statistical accuracy [7].
The DFA scaling exponents describe the collective corre-
lations over the studied range of scales in contrast to the
pointwise correlations of the autocorrelation function [8].
We complement the analysis by studying a spectrum of
scale-dependent exponents α(s) [8].

For comparison, we also compute other conventional
HRV measures: mean RR, standard deviation (SD), the
root mean square of successive differences (RMSSD)
and the percentage of successive differences over 20 ms
(pRR20) from the time domain, Poincaré plot indices
(SD2, SD2/SD1), and frequency domain high- (HF) and

low-frequency power (LF) and the HF/LF ratio. For the
frequency domain analysis, the time series are detrended
using smoothness priors method (with the smoothing pa-
rameter λ = 500) [13] and transformed into frequency do-
main with Lomb–Scargle periodogram [14].

We study the statistical significance of the differences in
the location parameters of the HRV measure distributions
among the different groups with Welch’s t-test p-values
(which does not assume equal variances in contrast to Stu-
dent’s t-test). For diagnostic purposes, differences in the
mean behavior are not sufficient, but the distributions must
be distinct enough such that a randomly chosen sample can
be assigned to one of the groups with sufficient certainty.
We study this distinguishability with the receiver operat-
ing characteristic (ROC) [15]. The ROC is a plot of the true
positive rate versus the false positive rate of a single thresh-
old binary classifier when the threshold is varied across all
the observed values. The area under the curve (AUC) can
be intuitively interpreted as the probability of the classi-
fier correctly distinguishing two randomly chosen samples
from both groups.

4. Results and discussion

The short-scale DFA scaling exponents α1 indicate re-
duced RRI correlations for LQTS patients in Fig. 1. The
correlations are further reduced by BB treatment. Increas-
ing the DFA detrending order broadens the distributions of
the α1 values. However, at the same time, the distributions
are shifted such that the medians and interquartile ranges
of the LQTS groups become more clearly separated from
those of the healthy cases. The differences in the mean
α1 are statistically significant already with DFA-1 (healthy
vs. LQTS no BB: p = 4.5 × 10−4, healthy vs. LQTS
BB: p = 7.5 × 10−8), but are notably elevated with the
non-linear detrending of DFA-2 (healthy vs. LQTS no BB:
p = 3.2× 10−8, healthy vs. LQTS BB: p = 2.5× 10−13).
With DFA-3 the statistical significances remain approxi-
mately similar to those of DFA-2. No statistically signifi-
cant differences were found in the α1 between the LQT1/2
genotypes, and for the other genotypes there is insufficient
data to draw conclusions. Therefore, we focus on the com-
bined genotype data in this study of RRI correlations.

For comparison, we also computed other common HRV
measures. The statistical significance of their differences
and the diagnostic power between the healthy and LQTS
cases are illustrated in Fig. 2 by p-values and ROC-AUC
scores, respectively. In Fig. 2(a) we find that the higher
order DFA α1 are the best indicators for LQTS in the ab-
sence of BB treatment. For diagnosing LQTS this is the
most interesting case, as the prescription of BBs implies
an already known heart condition. The heart rate itself
is known to affect HRV, and indeed the differences in the
mean RR level alone result in medial distinctiveness be-
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Figure 1. Box plots of short-scale DFA scaling exponents
α1 for different DFA detrending orders.
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Figure 2. Welch’s-t test p-values versus ROC-AUC for
different HRV measures. Comparison between healthy and
LQTS without (a) and with (b) beta blocker therapy.

tween these two groups. Despite this trivial confounding
factor the DFA-2&3 α1 clearly outperform the other HRV
measures with known heart rate dependence.

Beta blockers are known to decrease the heart rate and
thus are expected to have an effect on HRV. This is mani-
fested in Fig. 2(b) where the mean RR has become a promi-
nently distinctive measure, along with other measures with
trivial RR dependence. Notably, while the distinctiveness
of α1 of DFA-1, 2, and 3 is also increased, the beat rate de-
pendent measures are affected to a greater extent, suggest-
ing that the reduction of the short-scale RRI correlations is
a characteristic of LQTS beyond the beat rate effect.

More in-depth insights into the RRI correlations are ob-
tained by studying the scale-dependent α(s) in Fig. 3. The
results for DFA-2 in Fig. 3(a) demonstrate common qual-
itative features among all the studied DFA orders: (i) bias
for increased α(s) at the very shortest scales, (ii) the mean
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Figure 3. Scale-dependent DFA results with mean α(s)
(solid line) and its bootstrapped 95 % confidence intervals
(strong shading) and standard deviation (light shading +
dashed line) for DFA-2 (a), DFA-1 (b), and DFA-3 (c).

α(s) remain distinct for healthy and LQTS from the short-
est scales until a longer threshold scale with BBs raising
the threshold, (iii) after the threshold the α(s) for all the
groups converge towards unity, and (iv) despite statistically
significant differences in the mean α(s) the distributions
have substantial overlap.

The α(s) results for DFA-1&3 are shown in Figs. 3(b,c),
which reveal the following quantitative differences among
the common features with increasing DFA detrending or-
der: (i) magnitude of the short-scale bias and the scales it
affects are increased, (ii) the threshold at which the confi-
dence intervals of the mean α(s) for healthy and LQTS be-
gin to overlap shifts to longer scales (DFA-1: 9, DFA-2: 15,
DFA-3: 20), (iii) the beginning of the mutual convergence
towards unity is similarly shifted to larger scales (DFA-
1: ≈15, DFA-2: ≈25, DFA-3: ≈35), and (iv) the overall
α(s) distributions broaden, but the standard deviations be-
come slightly more separated from the means of the other
groups and remain so through longer scales.

The final point may not be visually obvious but is made
rigorous by the study of the scale-dependent ROC-AUC
scores for α(s) in Fig. 4. There is a notable improvement
in the AUC score for the higher order methods over lin-
ear DFA-1 (with the exception of the dip at the shortest
scales due to the bias). The distinguishability also remains
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Figure 4. Receiver operating characteristic area under
curve (ROC-AUC) values for α(s). Comparison between
healthy and LQTS without beta blocker therapy.

at higher levels through longer scales with increasing DFA
order. The AUC bouncing through the value 0.5 of random
chance corresponds to the mean levels of α(s) for healthy
and LQTS crossing each other.

The AUC values suggest that the standard α1 fitting
range of 4–16 RRIs extends to the scales too long for
DFA-1 to provide optimal results. This could be due to
possible short-term trends in LQTS that are not sufficiently
accounted for by the linear detrending, resulting in the en-
hanced performance of the higher order methods. Addi-
tional insights could be gained by taking into account the
circadian rhythm in the 24-hour recordings and analyzing
shorter segments. This could lead to more viable data by
not discarding entire recordings for data quality, permitting
more careful study of the different genotypes.

5. Conclusions

Short-scale RRI correlations, measured by DFA α1, are
reduced in LQTS and further with BB treatment. DFA
scaling exponents, especially with higher-order detrend-
ing, are superior indicators for LQTS compared to other
conventional HRV measures. A combination of novel
scale-dependent DFA measures could potentially be uti-
lized for enhancing the LQTS scoring system [1] for im-
proved diagnosability.
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